Add like
Add dislike
Add to saved papers

Glucometabolic effects of single and repeated exposure to forced-swimming stressor in Sprague-Dawley rats.

OBJECTIVES: We aimed to evaluate the effects of a single (acute) and repeated (chronic) exposure to forced-swimming stressor on glucose tolerance, insulin sensitivity, lipid profile and glycogen content in male rats.

METHODS: Thirty adult male Sprague-Dawley rats (12 weeks old) were divided randomly into five groups: control group, single exposure (SE) to forced-swim stressor, repeated exposure to forced-swim stressor for 7 days (RE7), 14 days (RE14) and 28 days (RE28). Glucose tolerance test and Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) were undertaken on fasting rats to obtain glucose and insulin profiles. ELISA was performed to assess plasma insulin and corticosterone levels. Total cholesterol, triglyceride, high- and low-density lipoproteins, hepatic and skeletal glycogen content were also determined.

RESULTS: Repeated exposure to stressor induced glucose intolerance and insulin resistance in the experimental rats. Results showed that all RE groups exhibited a significantly higher area under the curve compared with others (p=0.0001); similarly, HOMA-IR increased (p=0.0001) in all RE groups compared with control. Prolonged exposure to stressor significantly increased the plasma insulin and corticosterone levels but decreased the glycogen content in the liver and skeletal muscle when compared with the control group. Additionally, chronic stressor significantly increased the total cholesterol and triglyceride levels, however, acute stressor produced significantly elevated high-density lipoproteins level.

CONCLUSIONS: In conclusion, repeated exposure to forced-swimming stressor induced glucose intolerance and insulin resistance in rats by disrupting the insulin sensitivity as well as heightening the glycogenolysis in the liver and skeletal muscle. Acute stressor was unable to cause glucose intolerance and insulin resistance but it appears that may have a positive effect on the lipid metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app