Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20.

Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae , Hantaviridae , and Nairoviridae families, whereas phleboviruses ( Phenuiviridae ) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance. IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an "antiviral state." Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app