Add like
Add dislike
Add to saved papers

Differential ROS Generation in Response to Stress in Symbiodinium spp.

Biological Bulletin 2018 Februrary
Oxidative stress inside cells occurs when the production of reactive oxygen species (ROS) is no longer efficiently counterbalanced by the generation of antioxidants. In this study, we measured the intracellular production of ROS, including hydrogen peroxide (H2 O2 ), superoxide (O2 - ), and singlet oxygen (1 O2 ), in cultured dinoflagellates of the genus Symbiodinium under thermal and oxidative stress. ROS tagged with fluorescent probes were measured by flow cytometry. Dissimilar Symbiodinium internal transcribed spacer 2 (ITS2) clades or phylotypes (A1, B2, E, F1) produced ROS in different quantities in response to stress. For example, when comparing the control (26 °C) to the high-temperature treatment (35 °C), Symbiodinium E showed no change in the intracellular concentrations of any of the ROS; but phylotype A1 displayed a 10-fold increase in the overall ROS concentration and a 4-fold increase in O2 - . Under oxidative stress, when 8 mmol l-1 H2 O2 was added to the cells, these same two Symbiodinium phylotypes increased their overall concentrations of ROS, but only Symbiodinium E showed an increase in the concentrations of O2 - (2×) and 1 O2 (3×). Therefore, not only were the stress responses of the various Symbiodinium phylotypes different but also the responses of individual phylotypes to thermal and oxidative stress were different in terms of ROS production. Variation in the quality and quantity of ROS generation and its implications for subsequent antioxidant production suggest that different stress mechanisms are at play. While our experiments were done under laboratory conditions that did not necessarily mirror ecological ones, these results provide new insight into processes inside Symbiodinium cells during stress events and add new explanations for a phylotype's susceptibility to stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app