MicroRNA-223 Regulates Cardiac Fibrosis After Myocardial Infarction by Targeting RASA1

Xiaoxiao Liu, Yifeng Xu, Yunfei Deng, Hongli Li
Cellular Physiology and Biochemistry 2018, 46 (4): 1439-1454

BACKGROUND/AIMS: Percutaneous coronary intervention reduces acute myocardial infarction (MI)-induced mortality to a great extent, but effective treatments for MI-induced cardiac fibrosis and heart failure are still lacking. MicroRNAs (miRNAs) play a variety of roles in cells and have thus been investigated extensively. MicroRNA-223 (miR-223) expression has been reported to be altered in post-MI heart failure in humans; however, the roles of miR-223 in MI remain unknown. Our study aimed to elucidate the roles of miR-223 in cardiac fibrosis.

METHODS: Cultured cardiac fibroblasts (CFs) were activated by TGF-β1 stimulation. Gain and loss of miR-223 and RAS p21 protein activator 1 (RASA1) knockdown in CFs were achieved by transfecting the cells with miR-223 mimics and inhibitors, as well as small interfering RNA-RASA1 (siRASA1), respectively. Quantitative real-time reverse transcriptase-polymerase chain reactions (qRT-PCR) was used to determine miR-223-3p and RASA1 expression levels, and Cell Counting Kit-8 (CCK-8), transwell migration and scratch assays were performed to assess CFs viability and migration, respectively. Western blotting was used to detect collagen I, collagen III, alpha-smooth muscle actin (a-SMA), RASA1, p-Akt/t-Akt, p-MEK1/2/t-MEK1/2, and p-ERK1/2/t-ERK1/2 protein expressions, and immunofluorescence assays were used to detect the expression of α-actin, vimentin and α-SMA. Luciferase assays were carried out to determine whether miR-223 binds to RASA1. Rat models of MI were established by the ligation of the left anterior descending (LAD) coronary artery. MiR-223 inhibition in vivo was achieved via intramyocardial injections of the miR-223 sponge carried by adeno-associated virus 9 (AAV9). The cardiac function was detected by echocardiography, and cardiac fibrosis was shown by Masson's trichrome staining.

RESULTS: miR-223 was increased in CFs compared to cardiomypcytes, and TGF-β1 treatment increased miR-223 expression in CFs. The miR-223 mimics enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs, while the miR-223 inhibitors had contrasting effects and partially prevented the promoting effects of TGF-β1. qRT-PCR and western blotting revealed that miR-223 negatively regulated RASA1 expression, and the luciferase assays showed that miR-223 suppressed the luciferase activity of the RASA1 3' untranslated region (3'UTR), indicating that miR-223 binds directly to RASA1. Similar to transfection with the miR-223 mimics, RASA1 knockdown enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs. Moreover, RASA1 knockdown partially reversed the inhibitory effects of the miR-223 inhibitor on cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression, indicating that the effects of miR-223 in CFs are partially mediated by the regulation of RASA1 expression. Further exploration showed that miR-223 mimics and siRASA1 promoted MEK1/2, ERK1/2 and AKT phosphorylation, while the miR-223 inhibitors had contrasting effects. The in vivo experiments confirmed the results of the in vitro experiments and showed that miR-223 inhibition prevented cardiac functional deterioration and cardiac fibrosis.

CONCLUSIONS: miR-223 enhanced cell proliferation, migration, and differentiation in CFs, thus mediated cardiac fibrosis after MI partially via the involvement of RASA1.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"