Add like
Add dislike
Add to saved papers

Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer.

Codelivery of chemo-sensitizers with chemotherapeutics using combo nanomedicine is a promising platform for overcoming chemoresistance in breast cancer. However, tumor accumulation of nano-carriers based on enhanced permeability and retention (EPR) effect is confounded by heterogeneity in tumor microenvironment. Adsorption of protein corona on surface of nanoparticle boost up clearance by reticulo-endothelial system. In this study, a surface functionalized magnetic nanocomposite (NC) for codelivery of doxorubicin (DOX) and curcumin (CUR) is developed. NCs were coated with hydroxyapatite and were also cross linked with β-cyclodextrin. NCs efficiently encapsulated DOX and CUR. Release of CUR and DOX were in a sustained pH-depended pattern. β-cyclodextrin functionalization reduced protein corona according sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. As shown by flowcytometric and confocal microscopy analyses, NCs internalized efficiently by human breast carcinoma cells MCF-7 and adriamycin resistant MCF-7 (MCF-7/adr) cells. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test demonstrated superior cytotoxicity of DOX-CUR loaded NCs. Anti-tumor efficacy analyses confirmed reduction in relative tumor volume size (RTV%) compared to control group. Western blot analyses demonstrated marginal CUR mediated P-glycoprotein (P-gp) down regulation. DOX-CUR loaded NCs efficiently accumulated into the tumor via external magnet guidance. Nevertheless, the increased tumor accumulation did not correlate with pharmacologic responses such as RTV% and significant superiority over free DOX was not observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app