Add like
Add dislike
Add to saved papers

Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources.

Bioengineered 2018 January 2
Poly-(3-hydroxybutyrate) (P3HB) is a polyester with biodegradable and biocompatible characteristics suitable for bio-plastics and bio-medical use. In order to reduce the raw material cost, cheaper carbon sources such as xylose and glycerol were evaluated for P3HB production. We first conducted genome-scale metabolic network analysis to find the optimal pathways for P3HB production using xylose or glycerol respectively as the sole carbon sources. The results indicated that the non-oxidative glycolysis (NOG) pathway is important to improve the product yields. We then engineered this pathway into E. coli by introducing foreign phophoketolase enzymes. The results showed that the carbon yield improved from 0.19 to 0.24 for xylose and from 0.30 to 0.43 for glycerol. This further proved that the introduction of NOG pathway can be used as a general strategy to improve P3HB production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app