Add like
Add dislike
Add to saved papers

Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure.

AIMS: Symptoms from overactive bladder (OAB) and cystitis secondary to urinary tract infection (UTI) can be similar in post-menopausal women. Effects of ovariectomy (OVX) on voiding behavior after lipopolysaccharide (LPS) intravesical exposure (surrogate for cystitis) in mice were measured. Urothelial genes associated with micturition changes were identified.

METHODS: Female C57BL6/J mice underwent OVX or sham surgeries (n = 10 for each). Voiding spot assays (VSA) were performed prior to surgery, 4 weeks post-surgery, and each time after 3 consecutive days of transurethral instillation of LPS. In another experiment, mice underwent either sham (n = 9) or OVX (n = 9) surgeries. Urothelial RNAs were collected 4 weeks post-surgery, day 1 and day 3 after LPS instillation. Mouse Gene 2.0 ST Arrays (entire 34 K transcripts) were used for microarray hybridization. A set of criteria was utilized to identify gene expression changes that mimicked voiding behavior changes.

RESULTS: Three days after LPS exposure, OVX mice persisted with overactive whereas sham mice normalized voiding behavior. Nine urothelial paralleling voiding behavior changes were identified: IL6 (interleukin 6), IL6rα (Interleukin 6 receptor α), Ptgs2 (Prostaglandin-endoperoxide synthase 2 or COX-2), Ereg (epiregulin), Dusp6 (dual specificity phosphatase 6), Zfp948 (zinc finger protein 948), Zfp52 (Zinc finger protein 52), Gch1 (GTP cyclohydrolase 1), and Amd (S-adenosylmethionine decarboxylase). Three other genes, coding unknown proteins, were also identified: GM12840, GM23134, and GM26809.

CONCLUSIONS: OVX mice persisted with increased voiding frequency after LPS. Urothelial genes that could mediate this voiding behavior include IL6, COX-2, and S-adenosylmethionine decarboxylase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app