Add like
Add dislike
Add to saved papers

Ralstonia eutropha's Poly(3-hydroxybutyrate)(PHB) polymerase PhaC1 and PHB depolymerase PhaZa1 are phosphorylated in vivo .

In this study, we screened PHB synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phase. Thr373 of PHB synthase PhaC1 was phosphorylated in the stationary growth phase but was not modified in the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in phosphorylated form both in the exponential and in the stationary growth phase. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modification of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for modulation of the activities of PHB synthase and PHB depolymerase. Importance Polyhydroxybutyrate (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and other stress conditions. The simultaneous presence of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation Cupriavidus necator ) has been previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of identified residues. Furthermore, we conducted in vitro and in vivo analysis of PHB synthase activity and PHB contents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app