Add like
Add dislike
Add to saved papers

Citrus Epicarp-Derived Biochar Reduced Cd Uptake and Ameliorates Oxidative Stress in Young Abelmoschus esculentus (L.) Moench (okra) Under Low Cd Stress.

Due to the important role of biochar (BC) in reducing metal-toxicity in plants, this study was aimed at assessing the potential of citrus epicarp-derived BC in ameliorating Cd toxicity in young Abelmoschus esculentus (okra) under low Cd toxicity. Okra was grown in soil amended with BC at four treatment levels for 49 days as follows: control (A), sole 1.4 mg Cd/kg-spiked soil (B), 1.4 mg Cd/kg-spiked soil + 1% BC (C) and 1.4 mg Cd/kg-spiked soil + 3% BC (D). The results showed a dose-dependent reduction in shoot accumulation of Cd due to the BC application. In addition, compared to control and sole Cd-amended soil, BC treatments (both at 1% and 3% w/w) decreased the oxidative stress, and enhanced activities of enzymatic and non-enzymatic antioxidants in the young okra. Generally, the application of BC to the soil was effective in ameliorating the Cd-induced oxidative stress in okra with limited shoot bioaccumulation of Cd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app