PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside

Anita A Turk, Kari B Wisinski
Cancer 2018 June 15, 124 (12): 2498-2506
Individuals with breast and ovarian cancer susceptibility gene 1 (BRCA1) or BRCA2 germline mutations have a significantly increased lifetime risk for breast and ovarian cancers. BRCA-mutant cancer cells have abnormal homologous recombination (HR) repair of DNA. In these tumors, the base excision repair (BER) pathway is important for cell survival. The poly(adenosine diphosphate-ribose) polymerase (PARP) enzymes play a key role in BER, and PARP inhibitors are effective in causing cell death in BRCA-mutant cells while sparing normal cells-a concept called synthetic lethality. PARP inhibitors are the first cancer therapeutics designed to exploit synthetic lethality. Recent clinical trials in BRCA-mutant, metastatic breast cancer demonstrated improved outcomes with single-agent PARP inhibitors (olaparib and talazoparib) over chemotherapy. However, resistance to PARP inhibitors remains a challenge. Primarily due to myelosuppression, the combination of PARP inhibitors with chemotherapy has been difficult. Novel combinations with chemotherapy, immunotherapy, and other targeted therapies are being pursued. In this review, the authors discuss current knowledge of PARP inhibitors in BRCA-mutant breast cancer and potential future directions for these agents. Cancer 2018;124:2498-506. © 2018 American Cancer Society.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"