Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction

Juan Hu, Pan Cheng, Guang-Yao Huang, Guo-Wei Cai, Feng-Zhen Lian, Xiao-Yun Wang, Shan Gao
Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 2018 March 15, 42: 245-257

BACKGROUND: Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis.

PURPOSE: To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED).

MATERIALS AND METHODS: Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues.

RESULTS: XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group.

CONCLUSION: XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"