JOURNAL ARTICLE

Abnormalities in the relationship of paraoxonase 1 with HDL and apolipoprotein A1 and their possible connection to HDL dysfunctionality in type 2 diabetes

Alena Viktorinova, Ingrid Jurkovicova, Lubomira Fabryova, Sona Kinova, Michal Koren, Anna Stecova, Klara Svitekova
Diabetes Research and Clinical Practice 2018, 140: 174-182
29626583

AIMS: Lipid parameters, lipid risk indexes and lipid-related oxidative stress markers (paraoxonase 1 [PON1] and lipid peroxides [LPO]) reflect the actual status of lipid metabolism in type 2 diabetes (T2DM). We hypothesized that relationships of high-density lipoprotein cholesterol (HDL-c) with PON1 and apolipoprotein A1 (ApoA1) and/or PON1 with ApoA1 under conditions of hyperglycaemia and oxidative stress might reveal HDL functionality. We investigated relationships between PON1, LPO, and lipid risk markers in T2DM subjects and compared them with those in healthy subjects.

METHODS: A total of 107 Caucasian subjects, 67 T2DM outpatients (mean age 52.2 ± 6.9 years) and 40 healthy subjects (mean age 48.1 ± 7.5 years) were included in the study. Serum levels of total cholesterol (CHOL-T), HDL-c, low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), apolipoprotein B (ApoB), ApoA1, LPO, and PON1 activity were measured. Non-HDL-c, ApoB/ApoA1 and non-HDL/HDL (lipid risk indexes) were calculated.

RESULTS: Higher levels of TG, LPO (P < 0.0001), nonHDL/HDL and ApoB/ApoA1 (P < 0.001, 0.05, respectively), and lower levels of HDL-c, ApoA1, and PON1 (P < 0.0001) were observed in T2DM subjects than in controls. There is a lack of relationship among PON1, HDL-c, and ApoA1 in T2DM patients. PON1 activity positively correlated with these parameters (P < 0.0001) in controls. Strong correlations between non-HDL-c and ApoB (r = 0.956 vs. 0.756; P < 0.0001), LPO and TG (r = 0.831 vs. 0.739; P < 0.0001) were recorded in both study groups (P < 0.0001).

CONCLUSIONS: Impaired anti-oxidant and anti-atherogenic HDL properties associated with weakened PON1 function and lipid peroxidation may contribute to the development of atherosclerosis-related diseases in T2DM.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
29626583
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"