Add like
Add dislike
Add to saved papers

Limitations of the rat medial forebrain lesion model to study prefrontal cortex mediated cognitive tasks in Parkinson's disease.

Brain Research 2018 March 31
Parkinson's Disease (PD) is a progressive movement disorder characterized by the loss of dopaminergic neurons in the midbrain. Besides motor impairment, PD patients exhibit non-motor symptoms that negatively impact their quality of life and often manifest prior to motor deficits. One such symptom is mild cognitive impairment (PD-MCI), which is comprised of deficits in executive function such as working memory, attention, cognitive flexibility, and spatial memory. The 6-hydroxydopamine (6-OHDA) induced unilateral medial forebrain bundle (MFB) lesion animal model successfully recapitulates PD motor impairment but is also used to assess non-motor deficits. The present study utilizes a unilateral 6-OHDA induced MFB lesion rodent model to investigate prefrontal cortex (PFC)-mediated cognitive processes that are impaired in PD patients. In a test of attentional set shifting, PD rodents demonstrated deficits in simple discrimination, but not in rule reversal or extradimensional shifts. PD rodents also exhibited deficits in a temporal order memory task but had no deficits in novel/spatial object recognition or object-in-place tasks. These results reveal limitations of the 6-OHDA induced unilateral MFB lesion model to completely recapitulate PD-MCI symptoms suggesting a need for better lesion models to study PD-MCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app