Add like
Add dislike
Add to saved papers

Frontline Science: Characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils.

Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a human cell surface protein expressed exclusively on eosinophils, mast cells, and basophils that, when engaged, induces eosinophil apoptosis and inhibits mast cell mediator release. This makes Siglec-8 a promising therapeutic target to treat diseases involving these cell types. However, preclinical studies of Siglec-8 targeting in vivo are lacking because this protein is only found in humans, apes, and some monkeys. Therefore, we have developed a mouse strain in which SIGLEC8 transcription is activated by Cre recombinase and have crossed this mouse with the eoCre mouse to achieve eosinophil-specific expression. We confirmed that Siglec-8 is expressed exclusively on the surface of mature eosinophils in multiple tissues at levels comparable to those on human blood eosinophils. Following ovalbumin sensitization and airway challenge, Siglec-8 knock-in mice generated a pattern of allergic lung inflammation indistinguishable from that of littermate controls, suggesting that Siglec-8 expression within the eosinophil compartment does not alter allergic eosinophilic inflammation. Using bone marrow from these mice, we demonstrated that, during maturation, Siglec-8 expression occurs well before the late eosinophil developmental marker C-C motif chemokine receptor 3, consistent with eoCre expression. Antibody ligation of the receptor induces Siglec-8 endocytosis and alters the phosphotyrosine profile of these cells, indicative of productive signaling. Finally, we demonstrated that mouse eosinophils expressing Siglec-8 undergo cell death when the receptor is engaged, further evidence that Siglec-8 is functional on these cells. These mice should prove useful to investigate Siglec-8 biology and targeting in vivo in a variety of eosinophilic disease models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app