Add like
Add dislike
Add to saved papers

Saturated fatty acids bound to albumin enhance osteopontin expression and cleavage in renal proximal tubular cells.

Osteopontin (OPN) is one of the proinflammatory cytokines upregulated in the kidneys of diabetic animals and patients with nephropathy. An increase in urinary albumin and albumin-bound fatty acids (FA) presents a proinflammatory environment to the proximal tubules in proteinuric kidney diseases including diabetic nephropathy. This study was designed to examine if FA overload could stimulate OPN expression and cleavage in renal tubule epithelial cells. OPN gene and protein expression was examined in the kidney of Zucker diabetic (ZD) rats and cultured proximal tubular cells exposed to either bovine serum albumin (BSA) or BSA conjugated with palmitic acid (PA), the most abundant saturated plasma FA. Real-time PCR analysis confirmed an upregulation of renal cortical OPN gene correlated with albuminuria and nephropathy progression in ZD rats at the age of 7-20 weeks. Immunofluorescence staining of kidney sections revealed a massive induction of OPN protein in albumin-overloaded proximal tubules of ZD rats. A significant increase in both intact and cleaved OPN proteins was further demonstrated in the diabetic kidney and urine samples, which was attenuated by antiproteinuric treatment with losartan, an angiotensin II receptor blocker. When exposed to fatty acid-free BSA, NRK-52E cells exhibited an increase in protein levels of full-length and cleaved OPN. Moreover, the increase in OPN fragments was greatly enhanced in the presence of PA (250-500 µM). Together, our results support a stimulatory effect of albumin and conjugated FA on OPN expression and cleavage in renal tubule epithelial cells. Thus, besides lowering albuminuria/proteinuria, mitigating circulating FAs may be an effective intervention for preventing and slowing down the progression of nephropathy associated with obesity and type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app