JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better.

INTRODUCTION: Mechanical ventilation is required to support respiratory function in the acute respiratory distress syndrome (ARDS), but it may promote lung damage, a phenomenon known as ventilator-induced lung injury (VILI). Areas covered: Several mechanisms of VILI have been described, such as: inspiratory and/or expiratory stress inducing overdistension (volutrauma); interfaces between collapsed or edema-filled alveoli with surrounding open alveoli, acting as stress raisers; alveoli that repetitively open and close during tidal breathing (atelectrauma); and peripheral airway dynamics. In this review, we discuss: the definition and classification of ARDS; ventilatory parameters that act as VILI determinants (tidal volume, respiratory rate, positive end-expiratory pressure, peak, plateau, driving and transpulmonary pressures, energy, mechanical power, and intensity); and the roles of prone positioning and muscle paralysis. We seek to provide an up-to-date overview of the evidence in the field from a clinical perspective. Expert commentary: To prevent VILI, mechanical ventilation strategies should minimize inspiratory/expiratory stress, dynamic/static strain, energy, mechanical power, and intensity, as well as mitigate the hemodynamic consequences of positive-pressure ventilation. In patients with moderate to severe ARDS, prone positioning can reduce lung damage and improve survival. Overall, volutrauma seems to be more harmful than atelectrauma. Extracorporeal support should be considered in selected cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app