Add like
Add dislike
Add to saved papers

Inference from the stationary distribution of allele frequencies in a family of Wright-Fisher models with two levels of genetic variability.

The distribution of allele frequencies obtained from diffusion approximations to Wright-Fisher models is useful in developing intuition about the population level effects of evolutionary processes. The statistical properties of the stationary distributions of K-allele models have been extensively studied under neutrality or under selection. Here, we introduce a new family of Wright-Fisher models in which there are two hierarchical levels of genetic variability. The genotypes composed of alleles differing from each other at the selected level have fitness differences with respect to each other and evolve under selection. The genotypes composed of alleles differing from each other only at the neutral level have the same fitness and evolve under neutrality. We show that with an appropriate scaling of the mutation parameter with respect to the number of alleles at each level, the frequencies of alleles at the selected and the neutral level are conditionally independent of each other, conditional on knowing the number of alleles at all levels. This conditional independence allows us to simulate from the joint stationary distribution of the allele frequencies. We use these simulated frequencies to perform inference on parameters of the model with two levels of genetic variability using Approximate Bayesian Computation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app