Add like
Add dislike
Add to saved papers

Effects of the Serotonin 5-HT 1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following L-DOPA Administration in Hemi-Parkinsonian Rats.

Peak-dose dyskinesia is associated with the dramatic increase in striatal dopamine levels that follows L-DOPA administration. The 'false neurotransmitter' hypothesis postulates that the latter is likely due to an aberrant processing of L-DOPA by serotonergic neurons. In keeping with this hypothesis, two highly selective 'biased agonists' of 5-HT1A receptors-namely F13714 and F15599 (NLX-101)-were recently shown to exhibit exceptionally potent anti-dyskinetic activity without impairing L-DOPA therapeutic properties despite their differential targeting of 5-HT1A receptor sub-populations. In this study, we investigated whether these two compounds dampened peak L-DOPA-induced dopamine microdialysate levels in the striatum of hemi-parkinsonian rats. Acute administration of either F13714 (0.04 and 0.16 mg/kg i.p.) or F15599 (0.16 and 0.64 mg/kg, i.p.) blunted L-DOPA (2 mg/kg)-induced increases in dopamine microdialysate levels in the denervated striatum (following unilateral injection of 6-OHDA into the medial forebrain bundle). No significant changes were observed on the intact side of the brain. Concurrently, both drugs profoundly reduced striatal serotonin levels on both sides of the brain. In addition, F13714 and F15599, in the presence of L-DOPA, produced a dose-dependent increase in glutamate levels, but this effect was restricted to later time points. These finding support the interpretation that F13714 and F15599 mediate their anti-dyskinetic effects by blunting of the peak in dopamine levels via activation of somatodendritic serotonin 5-HT1A receptors and the consequent inhibition of serotonergic neurons. This study adds to the growing body of evidence supporting the development of a potent 5-HT1A receptor agonist for treatment of peak-dose dyskinesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app