Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer.

Nano Letters 2018 April 12
Photodynamic therapy (PDT) is an oxygen-dependent light-triggered noninvasive therapeutic method showing many promising aspects in cancer treatment. For effective PDT, nanoscale carriers are often needed to realize tumor-targeted delivery of photosensitizers, which ideally should further target specific cell organelles that are most vulnerable to reactive oxygen species (ROS). Second, as oxygen is critical for PDT-induced cancer destruction, overcoming hypoxia existing in the majority of solid tumors is important for optimizing PDT efficacy. Furthermore, as PDT is a localized treatment method, achieving systemic antitumor therapeutic outcomes with PDT would have tremendous clinical values. Aiming at addressing the above challenges, we design a unique type of enzyme-encapsulated, photosensitizer-loaded hollow silica nanoparticles with rationally designed surface engineering as smart nanoreactors. Such nanoparticles with pH responsive surface coating show enhanced retention responding to the acidic tumor microenvironment and are able to further target mitochondria, the cellular organelle most sensitive to ROS. Meanwhile, decomposition of tumor endogenous H2 O2 triggered by those nanoreactors would lead to greatly relieved tumor hypoxia, further favoring in vivo PDT. Moreover, by combining our nanoparticle-based PDT with check-point-blockade therapy, systemic antitumor immune responses could be achieved to kill nonirradiated tumors 1-2 cm away, promising for metastasis inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app