Add like
Add dislike
Add to saved papers

Resection Cavity Contraction Effects in the Use of Radioactive Sources (1-25 versus Cs-131) for Intra-Operative Brain Implants.

Curēus 2018 January 17
Background and Objectives Intra-parenchymal brain surgical resection cavities usually contract in volume following low dose rate (LDR) brachytherapy implants. In this study, we systematically modeled and assessed dose variability resulting from such changes for I-125 versus Cs-131 radioactive sources. Methods Resection cavity contraction was modeled based on 95 consecutive patient cases, using surveillance magnetic resonance (MR) images. The model was derived for single point source geometry and then fully simulated in 3D where I-125 or Cs-131 seeds were placed on the surface of an ellipsoidal resection cavity. Dose distribution estimated via TG-43 calculations and biological effective dose (BED) calculations were compared for both I-125 and Cs-131, accounting for resection cavity contractions. Results Resection cavity volumes were found to contract with an effective half-life of approximately 3.4 months (time to reach 50% of maximum volume contraction). As a result, significant differences in dose distributions were noted between I-125 and Cs-131 radioactive sources. For example, when comparing with static volume, assuming no contraction effect, I-125 exhibited a 31.8% and 30.5% increase in D90 and D10 values (i.e., the minimal dose to 90% and 10% of the volume respectively) in the peripheral target areas over the follow-up period of 20.5 months. In contrast, Cs-131 seeds only exhibited a 1.44% and 0.64% increase in D90 and D10 values respectively. Such discrepancy is likewise similar for BED calculations. Conclusion Resection cavity contractions affects Cs-131 dose distribution significantly less than that of I-125 for permanent brain implants. Care must be taken to account for cavity contractions when prescribing accumulative doses of a radioactive source in performing the brain implant procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app