JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds.

Contribution to Special Issue on Fast effects of steroids. Steroid hormones, such as estrogens, were once thought to be exclusively synthesized in the ovaries and enact transcriptional changes over the course of hours to days. However, estrogens are also locally synthesized within neural circuits, wherein they rapidly (within minutes) modulate a range of behaviors, including spatial cognition and communication. Here, we review the role of brain-derived estrogens (neuroestrogens) as modulators within sensory circuits in songbirds. We first present songbirds as an attractive model to explore how neuroestrogens in auditory cortex modulate vocal communication processing and learning. Further, we examine how estrogens may enhance vocal learning and auditory memory consolidation in sensory cortex via mechanisms similar to those found in the hippocampus of rodents and birds. Finally, we propose future directions for investigation, including: 1) the extent of developmental and hemispheric shifts in aromatase and membrane estrogen receptor expression in auditory circuits; 2) how neuroestrogens may impact inhibitory interneurons to regulate audition and critical period plasticity; and, 3) dendritic spine plasticity as a candidate mechanism mediating estrogen-dependent effects on vocal learning. Together, this perspective of estrogens as neuromodulators in the vertebrate brain has opened new avenues in understanding sensory plasticity, including how hormones can act on communication circuits to influence behaviors in other vocal learning species, such as in language acquisition and speech processing in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app