Add like
Add dislike
Add to saved papers

Nonadiabatic photodynamics of phenol on a realistic potential energy surface by a novel multilayer Gaussian MCTDH program.

Chemical Physics Letters 2015 September 2
We report the main features of a new implementation of the Gaussian Multi-Configuration Time-Dependent Hartree (G-MCTDH) model. The code allows effective computations of time-dependent phenomena, including calculation of vibronic spectra (in one or more electronic states), relative state populations etc., with the possibility of a multilayer formulation. We have validated the code on the diabatic surfaces recently published by Truhlar and coworkers to study the nonadiabatic photodynamics of phenol. Using an Ehrenfest-like, single-nuclear-configuration (but in a fully quantum formalism) model we calculate the optical spectrum and relative state populations of the system as a function of time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app