Add like
Add dislike
Add to saved papers

Localization of nectin-2α at the boundary between the adjacent somata of the clustered cholinergic neurons and its regulatory role in the subcellular localization of the voltage-gated A-type K + channel Kv4.2 in the medial habenula.

The medial habenula (MHb), implicated in stress, depression, memory, and nicotine withdrawal syndromes, receives septal inputs and sends efferents to the interpeduncular nucleus. We previously showed that the immunoglobulin-like cell adhesion molecules (CAMs) nectin-2α and nectin-2δ are expressed in astrocytes in the brain, but their expression in neurons remains unknown. We showed here by immunofluorescence microscopy that nectin-2α, but not nectin-2δ, was prominently expressed in the cholinergic neurons in the developing and adult MHbs and localized at the boundary between the adjacent somata of the clustered cholinergic neurons where the voltage-gated A-type K+ channel Kv4.2 was localized. Analysis by immunoelectron microscopy on this boundary revealed that Kv4.2 was localized at the membrane specializations (MSs) with plasma membrane darkening in an asymmetrical manner, whereas nectin-2α was localized on the apposed plasma membranes mostly at the outside of these MSs, but occasionally localized at their edges and insides. Nectin-2α at this boundary was not colocalized with the nectin-2α-binding protein afadin, other CAMs, or their interacting peripheral membrane proteins, suggesting that nectin-2α forms a cell adhesion apparatus different from the Kv4.2-associated MSs. Genetic ablation of nectin-2 delayed the localization of Kv4.2 at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing MHb. These results revealed the unique localization of nectin-2α and its regulatory role in the localization of Kv4.2 at the MSs in the MHb.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app