Add like
Add dislike
Add to saved papers

Further Developments of the Phenyl-Pyrrolyl Pentane Series of Nonsteroidal Vitamin D Receptor Modulators as Anticancer Agents.

The vitamin D3 receptor (VDR), which belongs to the nuclear-receptor superfamily, is a potential molecular target for anticancer-drug discovery. In this study, a series of nonsteroidal vitamin D mimics with phenyl-pyrrolyl pentane skeletons with therapeutic potentials in cancer treatment were synthesized. Among them, 11b and 11g were identified as the most effective agents in reducing the viability of four cancer-cell lines, particularly those of breast-cancer cells, with IC50 values in the submicromolar-concentration range. In addition, 11b and 11g possessed VDR-binding affinities and displayed significant partial VDR-agonistic activities determined by dual-luciferase-reporter assays and human-leukemia-cell-line (HL-60)-differentiation assays. Furthermore, 11b and 11g inhibited tumor growth in an orthotopic breast-tumor model via inhibition of cell proliferation and induction of cell apoptosis. More importantly, 11b and 11g exhibited favorable pharmacokinetic behavior in vivo and did not increase serum calcium levels or cause any other apparent side effects. In summary, 11b and 11g act as novel VDR modulators and may be promising candidates for cancer chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app