Add like
Add dislike
Add to saved papers

Neuroanatomical characterization of imidazoline I 2 receptor agonist-induced antinociception.

Chronic pain is a significant public health problem with a lack of safe and effective analgesics. The imidazoline I2 receptor (I2 R) is a promising analgesic target, but the neuroanatomical structures involved in mediating I2 R-associated behaviors are unknown. I2 Rs are enriched in the arcuate nucleus, dorsal raphe (DR), interpeduncular nucleus, lateral mammillary body, medial habenula, nucleus accumbens (NAc) and paraventricular nucleus; thus, this study investigated the antinociceptive and hypothermic effects of microinjections of the I2 R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI). In rats, intra-DR microinjections produced antinociception in complete Freund's adjuvant- and chronic constriction injury-induced pain models. Intra-NAc microinjections produced antinociception and increased noxious stimulus-associated side time in a place escape/avoidance paradigm. Intra-NAc pretreatment with the I2 R antagonist idazoxan but not the D1 receptor antagonist SCH23390 or the D2 receptor antagonist raclopride attenuated intra-NAc 2-BFI-induced antinociception. Intra-NAc idazoxan did not attenuate systemically administered 2-BFI-induced antinociception. Microinjections into the other regions did not produce antinociception, and in none of the regions produced hypothermia. These data suggest that I2 R activation in some but not all I2 R-enriched brain regions is sufficient to produce antinociception and supports the theory that different I2 R-associated effects are mediated via distinct receptor populations, which may in turn be distributed differentially throughout the CNS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app