Add like
Add dislike
Add to saved papers

1,3,4-Oxadiazole and Heteroaromatic-Fused 1,2,4-Triazole Synthesis using Diverted Umpolung Amide Synthesis.

Synthesis 2017 October
Umpolung Amide Synthesis (UmAS) has emerged as a superior alternative to conventional amide synthesis methods based on carbonyl electrophiles in a range of situations, particularly when epimerization-prone couplings are prescribed. In an unanticipated development during our most recent studies, it was discovered that diacyl hydrazide products from UmAS were not formed as intermediates when using an acyl hydrazide as the amine acceptor. This resulted in a new preparation of 1,3,4-oxadiazoles from α-bromonitroalkane donors. We hypothesized that a key tetrahedral intermediate in UmAS was diverted toward a more direct pathway to the heterocycle product rather than through formation of the diacyl hydrazide, a typical oxadiazole progenitor. In studies reported here, diversion to 1,2,4-triazole products is described, a behavior hypothesized to also result from an analogous tetrahedral intermediate, but one formed from heteroaromatic hydrazine acceptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app