JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Shox2: The Role in Differentiation and Development of Cardiac Conduction System.

The formation and conduction of electrocardiosignals and the synchronous contraction of atria and ventricles with rhythmicity are both triggered and regulated by the cardiac conduction system (CCS). Defect of this system will lead to various types of cardiac arrhythmias. In recent years, the research progress of molecular genetics and developmental biology revealed a clearer understanding of differentiation and development of the cardiac conduction system and their regulatory mechanisms. Short stature homeobox 2 (Shox2) transcription factor, encoded by Shox2 gene in the mouse, is crucial in the formation and differentiation of the sinoatrial node (SAN). Shox2 drives embryonic development processes and is widely expressed in the appendicular skeleton, palate, temporomandibular joints, and heart. Mutations of Shox2 can lead to dysembryoplasia and abnormal phenotypes, including bradycardiac arrhythmia. In this review, we provide a summary of the latest research progress on the regulatory effects of the Shox2 gene in differentiation and development processes of the cardiac conduction system, hoping to deepen the knowledge and understanding of this systematic process based on the cardiac conduction system. Overall, the Shox2 gene is intimately involved in the differentiation and development of cardiac conduction system, especially sinoatrial node. We also summarize the current information about human SHOX2. This review article provides a new direction in biological pacemaker therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app