Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Systems analysis of dilated cardiomyopathy in the next generation sequencing era.

Dilated cardiomyopathy (DCM) is a form of severe failure of cardiac muscle caused by a long list of etiologies ranging from myocardial infarction, DNA mutations in cardiac genes, to toxics. Systems analysis integrating next-generation sequencing (NGS)-based omics approaches, such as the sequencing of DNA, RNA, and chromatin, provide valuable insights into DCM mechanisms. The outcome and interpretation of NGS methods can be affected by the localization of cardiac biopsy, level of tissue degradation, and variable ratios of different cell populations, especially in the presence of fibrosis. Heart tissue composition may even differ between sexes, or siblings carrying the same disease causing mutation. Therefore, before planning any experiments, it is important to fully appreciate the complexities of DCM, and the selection of samples suitable for given research question should be an interdisciplinary effort involving clinicians and biologists. The list of NGS omics datasets in DCM to date is short. More studies have to be performed to contribute to public data repositories and facilitate systems analysis. In addition, proper data integration is a difficult task requiring complex computational approaches. Despite these complications, there are multiple promising implications of systems analysis in DCM. By combining various types of datasets, for example, RNA-seq, ChIP-seq, or 4C, deep insights into cardiac biology, and possible biomarkers and treatment targets, can be gained. Systems analysis can also facilitate the annotation of noncoding mutations in cardiac-specific DNA regulatory regions that play a substantial role in maintaining the tissue- and cell-specific transcriptional programs in the heart. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > RNA Methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app