We have located links that may give you full text access.
Novel indanone derivatives as MAO B/H 3 R dual-targeting ligands for treatment of Parkinson's disease.
European Journal of Medicinal Chemistry 2018 March 25
The design of multi-targeting ligands was developed in the last decades as an innovative therapeutic concept for Parkinson's disease (PD) and other neurodegenerative disorders. As the monoamine oxidase B (MAO B) and the histamine H3 receptor (H3 R) are promising targets for dopaminergic regulation, we synthetized dual-targeting ligands (DTLs) as non-dopaminergic receptor approach for the treatment of PD. Three series of compounds were developed by attaching the H3 R pharmacophore to indanone-related MAO B motifs, leading to development of MAO B/H3 R DTLs. Among synthesized indanone DTLs, compounds bearing the 2-benzylidene-1-indanone core structure showed MAO B preferring inhibition capabilities along with nanomolar hH3 R affinity. Substitution of C5 and C6 position of the 2-benzylidene-1-indanones with lipophilic substituents revealed three promising candidates exhibiting inhibitory potencies for MAO B with IC50 values ranging from 1931 nM to 276 nM and high affinities at hH3 R (Ki < 50 nM). Compound 3f ((E)-5-((4-bromobenzyl)oxy)-2-(4-(3-(piperidin-1-yl)propoxy)benzylidene)-2,3-dihydro-1H-inden-1-one, MAO B IC50 = 276 nM, hH3 R Ki = 6.5 nM) showed highest preference for MAO B over MAO A (SI > 36). Interestingly, IC50 determinations after preincubation of enzyme and DTLs revealed also nanomolar MAO B potency for 3e (MAO B IC50 = 232 nM), a structural isomer of 3f, and 3d (MAO B IC50 = 541 nM), suggesting time-dependent inhibition modes. Reversibility of inhibition for all three compounds were confirmed by dilution studies in excess of substrate. Thus, indanone-substituted derivatives are promising lead structures for the design of MAO B/hH3 R DTLs as novel therapeutic approach of PD therapy.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app