Add like
Add dislike
Add to saved papers

Predicting myofiber size with electrical impedance myography: A study in immature mice.

Muscle & Nerve 2018 Februrary 25
INTRODUCTION: Electrical impedance can be used to estimate cellular characteristics. We sought to determine whether it could be used to approximate myofiber size using standard prediction modeling approaches.

METHODS: Forty-four C57BL/6J wild-type immature mice of varying ages underwent electrical impedance myography (EIM) with a needle electrode array placed in the gastrocnemius. Animals were then humanely killed and muscle fixed, stained, and myofiber size quantified. Two different statistical prediction models were then applied.

RESULTS: Impedance parameters showed major variation with increasing myofiber size. The prediction models based on EIM data alone were able to predict fiber size, with errors in the range of ±69.05-78.44 µm2 (16.19%-18.40% with respect to the average myofiber size).

DISCUSSION: By using well-established statistical models, EIM data alone can provide a satisfactory estimate of myofiber size. Additional study of this approach for approximating myofiber size without the requirement of removing tissue for histological analysis is warranted. Muscle Nerve, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app