Add like
Add dislike
Add to saved papers

Translucency of IPS e.max and cubic zirconia monolithic crowns.

STATEMENT OF PROBLEM: Although several monolithic zirconia ceramics have recently been introduced, the need for improved optical properties remains. The newest cubic-zirconia has been claimed to have optimal translucency characteristics for esthetic restorations.

PURPOSE: This in vitro study evaluated the optical properties of novel cubic ultratranslucent (UT) and supertranslucent (ST) zirconia by comparing them with lithium disilicate (L-DIS) glass-ceramic for the manufacture of monolithic computer-aided design and computer-aided manufacturing (CAD-CAM) molar crowns.

MATERIAL AND METHODS: The UT and ST multilayered zirconia and the low-translucency grade L-DIS were milled. Eighty monolithic crowns were made from 2 CAD files, corresponding to thicknesses of 1.0 and 1.5 mm, and subdivided (n=20) into 4 groups: UT1.0, UT1.5, ST1.0, and L-DIS1.5. All groups were shaded using A2 color standard. Translucency of the crowns was measured by total transmission, using a photoradiometer in a dark chamber; furthermore, the contrast ratio was analyzed using a dental spectrophotometer applied to the buccal surface of the crowns. Data were analyzed using the Kruskal-Wallis and post hoc multiple Mann-Whitney U tests with Bonferroni correction (α=.05 divided by the number of tests performed in each set).

RESULTS: When the ceramic types were analyzed, using total transmission and contrast methods, they showed significantly different translucency levels: UT1.0>ST1.0>UT1.5>L-DIS1.5 (total transmission P<.001). Contrast ratio evaluation yielded similar results (P≤.006); however, the differences between ST1.0 and UT1.5 were not significant.

CONCLUSIONS: Both the ST1.0 and UT1.0 crowns, even at the maximum thickness tested (UT1.5), showed significantly higher translucency than L-DIS. Zirconia translucency was improved by eliminating the tetragonal phase, which is responsible for the toughening effect; thus, further studies are advocated to investigate the mechanical resistance of cubic zirconia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app