Journal Article
Review
Add like
Add dislike
Add to saved papers

The smell of renal protection against chronic kidney disease: Hydrogen sulfide offers a potential stinky remedy.

Chronic kidney disease (CKD) is a common global health challenge characterized by irreversible pathological processes that reduce kidney function and culminates in development of end-stage renal disease. It is associated with increased morbidity and mortality in addition to increased caregiver burden and higher financial cost. A central player in CKD pathogenesis and progression is renal hypoxia. Renal hypoxia stimulates induction of oxidative and endoplasmic reticulum stress, inflammation and tubulointerstitial fibrosis, which in turn, promote cellular susceptibility and further aggravate hypoxia, thus forming a pathological vicious cycle in CKD progression. Although the importance of CKD is widely appreciated, including improvements in the quality of existing therapies such as dialysis and transplantation, new therapeutic options are limited, as there is still increased morbidity, mortality and poor quality of life among CKD patients. Growing evidence indicates that hydrogen sulfide (H2 S), a small gaseous signaling molecule with an obnoxious smell, accumulates in the renal medulla under hypoxic conditions, and functions as an oxygen sensor that restores oxygen balance and increases medullary flow. Moreover, plasma H2 S level has been recently reported to be markedly reduced in CKD patients and animal models. Also, H2 S has been established to possess potent antioxidant, anti-inflammatory, and anti-fibrotic properties in several experimental models of kidney diseases, suggesting that its supplementation could protect against CKD and retard its progression. The purpose of this review is to discuss current clinical and experimental developments regarding CKD, its pathophysiology, and potential cellular and molecular mechanisms of protection by H2 S in experimental models of CKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app