Add like
Add dislike
Add to saved papers

Cytosolic ATP Relieves Voltage-Dependent Inactivation of T-Type Calcium Channels and Facilitates Excitability of Neurons in the Rat Central Medial Thalamus.

ENeuro 2018 January
The central medial nucleus (CeM) is a part of the intralaminar thalamus, which is involved in the control of arousal and sensory processing. However, ionic conductances and mechanisms that regulate the activity of the CeM are not well studied. Here, we used in vitro electrophysiology in acute brain slices from adolescent rats to demonstrate that T-type calcium currents (T-currents) are prominent in the majority of the studied CeM neurons and are critical determinants of low-threshold calcium spikes (LTSs), which in turn regulate excitability of these neurons. Using an ATP-free internal solution decreased T-current density and induced a profound hyperpolarizing shift in steady-state inactivation curves while voltage-dependent activation kinetics were spared. Furthermore, selective pharmacological blockade of T-channels or use of an ATP-free solution reduced both tonic action potential (AP) frequency and rebound burst firing in CeM neurons. Our results indicate that T-channels are critical regulators of a thalamocortical circuit output and suggest that cytosolic ATP could be an endogenous regulatory mechanism in which T-channels may functionally gate sensory transmission and arousal in vivo .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app