Add like
Add dislike
Add to saved papers

Evaluation of greater wax moth larvae, Galleria mellonella, as a novel in vivo model for non-tuberculosis Mycobacteria infections and antibiotic treatments.

PURPOSE: To evaluate the suitability of Galleria mellonella larvae as an in vivo model and drug-screening tool for mycobacteria infections.

METHODOLOGY: Larvae were infected using a range of inoculum sizes from a variety of rapid-growing mycobacteria, including strains of M. fortuitum, M. marinum and M. aurum. Larval survival, internal bacterial burden and the effects of amikacin, ciprofloxacin, ethambutol, isoniazid and rifampicin treatment on larval survival were measured over 144 h. The effects of these anti-mycobacterial drugs on phagocytosis and circulating haemocyte numbers were also examined using microscopy.

RESULTS: Larval survival decreased after infection with M. fortuitum and M. marinum in a dose-dependent manner, but remained unaffected by M. aurum. Heat-killed bacteria did not cause larval death. Where antibiotic monotherapy was efficacious, larval survival post-infection increased in a dose-dependent fashion. However, efficacy varied between different antibiotics and species of infecting mycobacteria and, apart from rifampicin, efficacy in vivo correlated poorly with the in vitro minimum inhibitory concentrations (MICs). Combinations of antibiotics led to higher survival of infected larvae than antibiotic monotherapy. Selected antibiotic treatments that enhanced larval survival reduced the overall internal burden of infecting mycobacteria, but did not eradicate the pathogens. Administration of amikacin or ethambutol to uninfected larvae induced an initial transient increase in the numbers of circulating haemocytes and reduced the phagocytic rate of haemocytes in larvae infected with M. marinum.

CONCLUSIONS: This report demonstrates the potential of employing a wax moth larvae model for studying fast-growing mycobacteria infections, and as a cheap, effective system for initial screening of novel treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app