Add like
Add dislike
Add to saved papers

Smith-Lemli-Opitz syndrome: clinical and biochemical correlates.

BACKGROUND: Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder caused by mutations in the DHCR7 gene that result in reduced cholesterol biosynthesis. The aim of the study was to examine the biochemical and clinical features of SLOS in the context of the emerging evidence of the importance of cholesterol in morphogenesis and steroidogenesis.

METHODS: We retrospectively reviewed the records of 18 patients (including four fetuses) with confirmed SLOS and documented their clinical and biochemical features.

RESULTS: Seven patients had branchial arch abnormalities, including micrognathia, immune dysfunction and hypocalcemia. Thymic abnormalities were found in three fetuses. All four patients with a cholesterol level of ≤0.35 mmol/L died. They all had electrolyte abnormalities (hyperkalemia, hyponatremia, hypocalcemia), necrotizing enterocolitis, sepsis-like episodes and midline defects including the branchial and cardiac defects. Patients with cholesterol levels ≥1.7 mmol/L had milder features and were diagnosed at 9 months to 25 years of age. All 10 patients had intellectual disability. One patient was found to have a novel mutation, c.1220A>G (p.Asn407Ser).

CONCLUSIONS: We suggest that screening for adrenal insufficiency and for hypoparathyroidism, hypothyroidism and immunodeficiency, should be done routinely in infants diagnosed early with SLOS. Early diagnosis and intervention to correct these biochemical consequences may decrease mortality and improve long-term outcome in these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app