Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction.

BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication.

METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function.

RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues.

CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency.

GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app