Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Improvement of cardiomyocyte function by in vivo hexarelin treatment in streptozotocin-induced diabetic rats.

Physiological Reports 2018 Februrary
Diabetic cardiomyopathy is characterized by diastolic and systolic cardiac dysfunction, yet no therapeutic drug to specifically treat it. Hexarelin has been demonstrated to improve heart function in various types of cardiomyopathy via its receptor GHS-R. This experiment aims to test the effect of hexarelin on cardiomyocytes under experimental diabetes. Streptozotocin (STZ, 65 mg/kg)-induced diabetic rat model was employed with vehicle injection group as control. Daily hexarelin (100 μg/kg) treatment was performed for 2 weeks after 4-week STZ-induced diabetes. Cardiomyocytes were isolated by enzyme treatment under O2 -saturated perfusion for single-cell shortening, [Ca2+ ]i transient, and electrophysiology recordings. GHS-R expression and apoptosis-related signaling proteins Bax, Bcl-2, caspase-3 and 9, were assessed by western blot. Experimental data demonstrated a reduced cell contraction and relaxation in parallel with depressed rise and fall of [Ca2+ ]i transients in diabetic cardiomyocytes. Hexarelin reversed the changes in both contraction and [Ca2+ ]i . Action potential duration and transient outward potassium current (Ito ) density were dramatically increased in diabetic cardiomyocytes and hexarelin treatment reverse such changes. Upregulated GHS receptor (GHS-R) expression was observed in both control and diabetic groups after hexarelin treatment, which also caused antiapoptotic changes of Bax, Bcl-2, caspase-3 and 9 expression. In STZ-induced diabetic rats, hexarelin is able to improve cardiomyocyte function through recovery of Ito K+ currents, intracellular Ca2+ homeostasis and antiapoptotic signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app