Add like
Add dislike
Add to saved papers

Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA.

The isotopic fractionation could contribute to understanding the Cd accumulation mechanisms in plant species. However, there are few of systematical investigations with regards to the Cd isotope fractionation in hyperaccumulator plants. The Cd tolerant Ricinus communis and hyperaccumulator Solanum nigrum were cultivated in nutrient solutions with varying Cd and EDTA concentrations. Cd isotope ratios were determined in the solution, root, stem and leaf. The two investigated plants were systematically enriched in light isotopes relative to their solutions (Δ114/110 Cdplant-solution  = -0.64‰ to -0.29‰ for R. communis and -0.84‰ to -0.31‰ for S. nigrum). Cd isotopes were markedly fractionated among the plant tissues. For both plant species, an enrichment in light Cd isotopes from solution to root was noted, followed by a slight depletion in light Cd isotopes from root to shoot. Noticeably, the chelation process has caused lighter Cd isotope enrichment in the root of R. communis and S. nigrum. Further, the good fits between △114/110 Cdroot-plant and ln Froot (or between △114/110 Cdshoot-plant and ln Fshoot ) indicate that Cd isotopic signatures can be used to study Cd transportation during the metabolic process of plants. This study suggests that knowledge of the Cd isotope ratios could also provide new tool for identifying the Cd-avoiding crop cultivars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app