Add like
Add dislike
Add to saved papers

Targeted versus untargeted omics - the CAFSA story.

BACKGROUND: In 2009, untargeted metabolomics led to the delineation of a new clinico-biological entity called cerebellar ataxia with elevated cerebrospinal free sialic acid, or CAFSA. In order to elucidate CAFSA, we applied sequentially targeted and untargeted omic approaches.

METHODS AND RESULTS: First, we studied five of the six CAFSA patients initially described. Besides increased CSF free sialic acid concentrations, three patients presented with markedly decreased 5-methyltetrahydrofolate (5-MTHF) CSF concentrations. Exome sequencing identified a homozygous POLG mutation in two affected sisters, but failed to identify a causative gene in the three sporadic patients with high sialic acid but low 5-MTHF. Using targeted mass spectrometry, we confirmed that free sialic acid was increased in the CSF of a third known POLG-mutated patient. We then pursued pathophysiological analyses of CAFSA using mass spectrometry-based metabolomics on CSF from two sporadic CAFSA patients as well as 95 patients with an unexplained encephalopathy and 39 controls. This led to the identification of a common metabotype between the two initial CAFSA patients and three additional patients, including one patient with Kearns-Sayre syndrome. Metabolites of the CSF metabotype were positioned in a reconstruction of the human metabolic network, which highlighted the proximity of the metabotype with acetyl-CoA and carnitine, two key metabolites regulating mitochondrial energy homeostasis.

CONCLUSION: Our genetic and metabolomics analyses suggest that CAFSA is a heterogeneous entity related to mitochondrial DNA alterations either through POLG mutations or a mechanism similar to what is observed in Kearns-Sayre syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app