Add like
Add dislike
Add to saved papers

One-Step Generalized Estimating Equations with Large Cluster Sizes.

Medical studies increasingly involve a large sample of independent clusters, where the cluster sizes are also large. Our motivating example from the 2010 Nationwide Inpatient Sample (NIS) has 8,001,068 patients and 1049 clusters, with average cluster size of 7627. Consistent parameter estimates can be obtained naively assuming independence, which are inefficient when the intra-cluster correlation (ICC) is high. Efficient generalized estimating equations (GEE) incorporate the ICC and sum all pairs of observations within a cluster when estimating the ICC. For the 2010 NIS, there are 92.6 billion pairs of observations, making summation of pairs computationally prohibitive. We propose a one-step GEE estimator that 1) matches the asymptotic efficiency of the fully-iterated GEE; 2) uses a simpler formula to estimate the ICC that avoids summing over all pairs; and 3) completely avoids matrix multiplications and inversions. These three features make the proposed estimator much less computationally intensive, especially with large cluster sizes. A unique contribution of this paper is that it expresses the GEE estimating equations incorporating the ICC as a simple sum of vectors and scalars.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app