Add like
Add dislike
Add to saved papers

Ongoing biodegradation of Deepwater Horizon oil in beach sands: Insights from tracing petroleum carbon into microbial biomass.

Heavily weathered petroleum residues from the Deepwater Horizon (DwH) disaster continue to be found on beaches along the Gulf of Mexico as oiled-sand patties. Here, we demonstrate the ongoing biodegradation of weathered Macondo Well (MW) oil residues by tracing oil-derived carbon into active microbial biomass using natural abundance radiocarbon (14 C). Oiled-sand patties and non-oiled sand were collected from previously studied beaches in Mississippi, Alabama, and Florida. Phospholipid fatty acid (PLFA) analyses illustrated that microbial communities present in oiled-sand patties were distinct from non-oiled sand. Depleted 14 C measurements of PLFA revealed that microbes on oiled-sand patties were assimilating MW oil residues five years post-spill. In contrast, microbes in non-oiled sand assimilated recently photosynthesized carbon. These results demonstrate ongoing biodegradation of weathered oil in sand patties and the utility of 14 C PLFA analysis to track the biodegradation of MW oil residues long after other indicators of biodegradation are no longer detectable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app