JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

A Single-Blind Study Evaluating the Efficacy of Gold Nanoparticle Photothermal-Assisted Liposuction in an Ex Vivo Human Tissue Model.

Background: Liposuction is one of the most performed cosmetic surgery procedures. In a previously reported study, gold-nanoparticle (GNP) laser-assisted liposuction (NanoLipo) was shown to improve procedure parameters and outcomes in a porcine model.

Objectives: An ex vivo human liposuction model was developed to assess the ease, efficacy, and outcomes of NanoLipo, and to further explore its mechanism of action in facilitating liposuction.

Methods: NanoLipo was compared to a control without GNPs in sets of fresh, nonperfused, anatomically symmetric, matched tissue specimens from 12 patients. A subset of three experiments was performed under single-blinded conditions. Intraoperative assessments included lipoaspirate volume, percentage of free oil, ease of removal, and temperature rise. Specimens were palpated, visualized for evenness, and graded with and without skin. Postoperative assessment included viability staining of the lipoaspirate and remaining tissues. Microcomputed tomography was used to assess the distribution of infused GNPs within the tissues.

Results: NanoLipo consistently removed more adipose tissue with more liberated triglycerides compared to control. NanoLipo specimens were smoother, thinner, and had fewer and smaller irregularities. Infused solutions preferentially distributed between fibrous membranes and fat pearls. After NanoLipo, selective structural-tissue disruptions, indicated by loss of metabolic activity, were observed. Thus, NanoLipo likely creates a bimodal mechanism of action whereby fat lobules are dislodged from surrounding fibro-connective tissue, while lipolysis is simultaneously induced.

Conclusions: NanoLipo showed many advantages compared to control under blinded and nonblinded conditions. This technology may be promising in facilitating fat removal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app