Add like
Add dislike
Add to saved papers

Comparisons of microplastic pollution between mudflats and sandy beaches in Hong Kong.

Most of the previous studies of microplastic pollution on coastal habitats focused on high energy beaches although low energy areas such as mudflats are supposed to retain more microplastics, not to mention that mudflats are biologically more diverse. We quantified and characterized microplastics from 10 mudflats and 10 sandy beaches in Hong Kong spanning from the eastern to western waters. Sediment samples were collected at 1.0 m and 1.5 m above chart datum (CD) and at the strandline. Abundance of microplastics ranged between 0.58 and 2116 items kg-1 sediment with that on mudflats being ten times more than on beaches. Polyethylene (46.9%) was the most abundant and followed by polypropylene (13.8%) and polyethylene terephthalate (13.5%). Expanded polystyrene was the most abundant in the strandline samples but not at 1.0 m and 1.5 m above CD. Although previous studies have concluded that the input from Pearl River is a major source of microplastics on Hong Kong shores, this study has demonstrated that the contribution of local pollution sources such as discharge from sewage treatment plants to microplastic pollution should not be neglected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app