Add like
Add dislike
Add to saved papers

The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation.

The disturbances of cellular proteostasis caused by the alteration in the ubiquitin-proteasome system (UPS) have been proposed as a common mechanism underlying several neural pathologies that involve a neuroinflammatory process. As we have previously reported that the nucleotide receptor P2Y purinoceptor 2 (P2Y2 R) regulates the proteasomal catalytic activities, we wonder whether this receptor is involved in the UPS disturbances associated with the neuroinflammation process. With the use of mice expressing a UPS reporter [mice expressing the UPS reporter ubiquitinG76V -green fluorescent protein (UbGFP mice)], we found that LPS-induced acute neuroinflammation status causes a UPS impairment in astrocytes and microglial cells by a mechanism dependent on P2Y2 R. In this line, LPS-treated double transgenic UbGFP; P2Y2 R-/- mice did not present a UPS impairment in astrocytes or a social interaction deficit as severe as that observed in LPS-treated UbGFP mice. In vivo administration of selective P2Y2 R agonist diuridine tetraphosphate reversed the UPS impairment completely in astrocytes and partially in microglial cells, promoting increased expression of the proteasomal β5 subunit by a mechanism dependent on the Src/PI3K/ERK pathway. Altogether, our results suggest that LPS induces unbalanced proteostasis in astrocytes by blocking P2Y2 R. Finally, our findings point to the design of selective P2Y2 R agonist drugs as a new therapeutic approach to treat the neuroinflammatory status.-De Diego García, L., Sebastián-Serrano, Á., Hernández, I. H., Pintor, J., Lucas, J. J., Díaz-Hernández, M. The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app