Add like
Add dislike
Add to saved papers

Kernel Methods for Riemannian Analysis of Robust Descriptors of the Cerebral Cortex.

Typical cerebral cortical analyses rely on spatial normalization and are sensitive to misregistration arising from partial homologies between subject brains and local optima in nonlinear registration. In contrast, we use a descriptor of the 3D cortical sheet (jointly modeling folding and thickness) that is robust to misregistration. Our histogram-based descriptor lies on a Riemannian manifold . We propose new regularized nonlinear methods for (i) detecting group differences, using a Mercer kernel with an implicit lifting map to a reproducing kernel Hilbert space, and (ii) regression against clinical variables, using kernel density estimation . For both methods, we employ kernels that exploit the Riemannian structure. Results on simulated and clinical data shows the improved accuracy and stability of our approach in cortical-sheet analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app