Add like
Add dislike
Add to saved papers

Determination of Carbon Chain Lengths of Fatty Acid Mixtures by Time Domain NMR.

Average carbon chain length is a key parameter that defines the quality of liquid biofuels. In this paper, a method for the determination of carbon chain lengths of fatty acid mixtures is presented. The approach is based on proton relaxation rates measured by time domain nuclear magnetic resonance. The spin-spin relaxation rates R 2 were used for the estimation of the carbon chain lengths. The method was examined for the set of samples with different mean lengths of the main linear carbon chain. Samples were prepared using four different fatty acids and mixtures of two, three or four of these fatty acids. The correlation coefficient between the known and measured values was equal to 0.994. Based on the relaxation theory, a linear-like dependence between the relaxation rate and carbon chain length was briefly shown, which endorses the experimental results. The developed methodology for determining carbon chain lengths offers robustness and rapidity, which are significant advantages when it comes to online use of the method in real industrial environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app