Add like
Add dislike
Add to saved papers

Population Based Image Imputation.

We present an algorithm for creating high resolution anatomically plausible images consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large databases of clinical images contain a wealth of information, medical acquisition constraints result in sparse scans that miss much of the anatomy. These characteristics often render computational analysis impractical as standard processing algorithms tend to fail when applied to such images. Highly specialized or application-specific algorithms that explicitly handle sparse slice spacing do not generalize well across problem domains. In contrast, our goal is to enable application of existing algorithms that were originally developed for high resolution research scans to significantly undersampled scans. We introduce a model that captures fine-scale anatomical similarity across subjects in clinical image collections and use it to fill in the missing data in scans with large slice spacing. Our experimental results demonstrate that the proposed method outperforms current upsampling methods and promises to facilitate subsequent analysis not previously possible with scans of this quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app