JOURNAL ARTICLE
REVIEW

Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress

Moran Benhar
Free Radical Biology & Medicine 2018 February 2
29378334
Mammalian cells employ elaborate antioxidant systems to effectively handle reactive oxygen and nitrogen species (ROS and RNS). At the heart of these systems operate two selenoprotein families consisting of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) enzymes. Although mostly studied in the context of oxidative stress, considerable evidence has amassed to indicate that these selenoenzymes also play important roles in nitrosative stress responses. GPx and TrxR, together with their redox partners, metabolize nitrosothiols and peroxynitrite, two major RNS. As such, these enzymes play active roles in the cellular defense against nitrosative stress. However, under certain conditions, these enzymes are inactivated by nitrosothiols or peroxynitrite, which may exacerbate oxidative and nitrosative stress in cells. The selenol groups in the active sites of GPx and TrxR enzymes are critically involved in these beneficial and detrimental processes. Further elucidation of the biochemical interactions between distinct RNS and GPx/TrxR will lead to a better understanding of the roles of these selenoenzymes in cellular homeostasis and disease.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
29378334
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"