Add like
Add dislike
Add to saved papers

WNT signaling is required for peritoneal membrane angiogenesis.

The wingless-type mouse mammary tumor virus integration site family (WNT) signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor-β (TGF-β)-mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGF-β-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal β-catenin protein was significantly upregulated after infection with adenovirus expressing TGF-β (AdTGF-β) along with elements of the WNT signaling pathway. Treatment with a β-catenin inhibitor (ICG-001) in mice with AdTGF-β-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf-related protein (DKK)-1. In addition to this, DKK-1 blocked epithelial-mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app