Add like
Add dislike
Add to saved papers

Interfering RNA against PKC-α inhibits TNF-α-induced IP 3 R1 expression and improves glomerular filtration rate in rats with fulminant hepatic failure.

We have reported that tumor necrosis factor-α (TNF-α) is critical for reduction of glomerular filtration rate (GFR) in rats with fulminant hepatic failure (FHF). The present study aims to evaluate the underlying mechanisms of decreased GFR during acute hepatic failure. Rats with FHF induced by d-galactosamine plus lipopolysaccharide (GalN/LPS) were injected intravenously with recombinant lentivirus harboring short hairpin RNA against the protein kinase C-α ( PKC-α) gene (Lenti-shRNA-PKC-α). GFR, serum levels of aminotransferases, creatinine, urea nitrogen, potassium, sodium, chloride, TNF-α, and endothelin-1 (ET-1), as well as type 1 inositol 1,4,5-trisphosphate receptor (IP3 R1) expression in renal tissue were assessed. The effects of PKC-α silencing on TNF-α-induced IP3 R1, specificity protein 1 (SP-1), and c-Jun NH2 -terminal kinase (JNK) expression, as well as cytosolic calcium content were determined in glomerular mesangial cell (GMCs) with RNAi against PKC-α. Renal IP3 R1 overexpression was abrogated by pre-treatment with Lenti-shRNA-PKC-α. The PKC-α silence significantly improved the compromised GFR, reduced Cr levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. TNF-α treatment increased expression of PKC-α, IP3 R1, specificity protein 1 (SP-1), JNK, and p-JNK in GMCs and increased Ca2 + release and binding activity of SP-1 to the IP3 R1 promoter. These effects were blocked by transfection of siRNA against the PKC-α gene, and the PKC-α gene silence also restored cytosolic Ca2+ concentration. RNAi targeting PKC-α inhibited TNF-α-induced IP3 R1 overexpression and in turn improved compromised GFR in the development of acute kidney injury during FHF in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app